Alternative explanation for dual expectation

Consider a simple case where N=2 (result can be generated to arbitrary N) and an information structure *G* defined by its cutoffs $\{0, s_1, 1\}$. This information structure induces two posterior means, x_1 and x_2 . Now we construct a minorant function <u>u</u> function as below, ¹

.

$$\underline{u}(x) = \begin{cases} u(x_1) + u'(x_1)(x - x_1) & \text{if } x \in [0, s_1), \\ u(x_2) + u'(x_2)(x - x_2) & \text{if } x \in [s, 1]. \end{cases}$$
(1)

Therefore, $\underline{u}(x)$ is convex and is piece-wise affine. Moreover, it is tangent to u(x) at each posterior mean. We want to argue that \underline{u} is also continuous at s_1 under the optimal solution, then the dual expectation such that s_1 is the conditional expectation on $[x_1, x_2)$ under the distribution u' follows from Corollary 1.

We prove by contradiction. Suppose the information structure *G*, characterized by the interval cutoffs $\{0, s_1, 1\}$, is optimal and the minorant function \underline{u} constructed accordingly is not continuous at s_1 , as in the left panel of Figure 1. Then consider another function $\underline{\hat{u}}$ such that,

$$\underline{\hat{u}}(x) = \max\{u(x_1) + u'(x_1)(x - x_1), u(x_2) + u'(x_2)(x - x_2)\},\$$

where $u(x_1) + u'(x_1)(x - x_1)$ meets $u(x_2) + u'(x_2)(x - x_2)$ at $\hat{s}_1 \in (x_1, x_2)$. See the right panel of Figure 1. Note that \hat{s}_1 exists. We also define the corresponding information structure \hat{G} , characterized by the interval partition with cutoffs $\{0, \hat{s}_1, 1\}$.

Then the following inequality holds.

$$\int u dG = \int \underline{u} dG = \int_{0}^{s_{1}} \underline{u} dF + \int_{s_{1}}^{1} \underline{u} dF$$

$$\leq \int_{0}^{\hat{s}_{1}} \underline{\hat{u}} dF + \int_{\hat{s}_{1}}^{1} \underline{\hat{u}} dF = \int \underline{\hat{u}} d\hat{G} \leq \int u d\hat{G}.$$
(2)

The first equality is because the information structure *G* puts mass points at x_1 and x_2 . The second equality comes from that <u>u</u> is piece-wise linear in state. The first inequality

¹In a single-agent decision problem, each line segment of \underline{u} represents the DM's payoff in state θ when he takes the optimal action $y^*(x_i)$.

Figure 1: Contradiction

in the second row comes from $\underline{\hat{u}}$ is everywhere above \underline{u} . The equality in the second row again comes from the piece-wise linearity of $\underline{\hat{u}}$. The last inequality is because u is everywhere above $\underline{\hat{u}}$. That is, there exists another information structure \hat{G} better than G if \underline{u} is not continuous at s_1 .²

²We thank Gregorio Curello for his inspiration of this proof.